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Free convection in laterally solidifying
mushy regions
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An analysis is presented of the lateral solidification of a semi-infinite mushy region
influenced by vertical, buoyancy-driven convection of the residual, interstitial melt.
We consider a parameter regime in which the flow is steady on the time scale of
the transient evolution of the mushy region. Our idealized model predicts patterns of
macrosegregation consistent with earlier experimental studies and sheds light on the
mechanisms involved.

1. Introduction
Mushy regions, regions in which liquid and solid phases coexist, are of particular

importance in many varied situations, including industrial crystal growth (Hurle
1993), the directional solidification of metallic alloys both in metallurgy (Kurz &
Fisher 1989) and the Earth’s core (Fearn 1998), and the freezing of silicate magma
chambers (Huppert & Sparks 1984). A distillation of the theoretical investigations
into the dynamics of mushy regions can be found in recent reviews by Worster (1997,
2000).

Most theoretical studies of convective dynamics in mushy regions have focused
on solidification at horizontal boundaries. Yet, as illustrated in a review by Huppert
(1990), a wide range of interesting convective behaviours can be observed during the
cooling and crystallization of binary alloys from a vertical boundary.

Motivated by geological processes in magma chambers, Turner & Gustafson (1981)
performed laboratory experiments in which various aqueous solutions were cooled
and solidified from a sidewall in confined spaces. Leitch (1987) and Bloomfield &
Huppert (2003) have extended these earlier experiments to investigate, among other
issues, the importance of different morphologies of the freezing interface to the
evolution of the boundary-layer flows and, in turn, to the structure of the resulting
solid. It was observed, for example, that dendritic interfaces act to enhance the rate
of crystal growth and development of stratification in the ambient liquid relative to
smoother ones.

Previous theoretical studies have considered flow in the liquid external to the
solidifying region (e.g. Nilson, McBirney & Baker 1985; Thompson & Szekely 1988;
Bloomfield & Huppert 2003). In this paper, we begin a theoretical study of the
fundamental properties of coupled solidification and convection within a partially
solidified region (mushy region) of a binary solution cooled from the side. We assume
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Figure 1. Definition sketch. A semi-infinite mushy region of far-field temperature TL(C0)
solidifies laterally at fixed speed V to form a solid at the eutectic temperature TE . The release
of a buoyant residual is confined to a thermal boundary layer adjacent to the interface.
Illustrative streamlines are shown relative to the (moving) solid phase.

that the flow takes place in a narrow thermal boundary layer within the mushy region,
which enables substantial simplification of the underlying governing equations. Self-
similar solutions of the laminar boundary-layer flows are used to determine many
of the important features analytically, and to identify clearly the essential physical
mechanisms involved.

In § 2 we describe the model and set out in dimensionless form the equations
governing the mushy region during the lateral solidification of a binary alloy. In § 3
we perform a boundary-layer analysis and identify a particular limit that preserves
important interactions between convection and solidification. The equations admit
a self-similar solution which is presented and discussed in § 4. Finally, in § 5, we
give some concluding remarks and discuss the relationship between our results and
previous experimental studies.

2. Formulation
We consider a binary alloy that releases a buoyant residual fluid as it solidifies,

being pulled horizontally at constant speed V past a heat exchanger that maintains
the eutectic temperature TE (below which the binary system is completely solid) at the
fixed vertical plane x = 0. The material supplied at x = ∞ has the solute composition
C0 and temperature equal to its liquidus temperature TL(C0). A mushy region fills the
semi-infinite region x > 0, z > 0, where z is measured vertically upwards (figure 1).

Throughout the mushy region, the temperature and composition are required to
satisfy the linear liquidus relationship

T = TL(C) ≡ TL(C0) + Γ (C − C0), (2.1)
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where the liquidus slope Γ is positive. This constraint denies the possibility of the
sort of bi-directional convection that can be found in the melt external to solidifying
regions (e.g. Nilson et al. 1985).

We treat the mushy region as being ideal (for a definition, see Worster 1997). The
unsteady dimensionless equations governing the mushy region are(

∂

∂t
− ∂

∂x

)
θ + u · ∇θ = ∇2θ + S

(
∂

∂t
− ∂

∂x

)
φ, (2.2a)(

∂

∂t
− ∂

∂x

)
[(1 − φ)θ + C φ] + u · ∇θ = 0, (2.2b)

∇2ψ − 1

Π
∇ψ · ∇Π = −RaΠ

∂θ

∂x
, (2.2c)

where t is dimensionless time, θ is the dimensionless temperature (or composition)
defined by θ = [T −TL(C0)]/�T = (C−C0)/�C with �C = C0 −CE , �T = Γ �C and
CE denoting the eutectic concentration, φ is the local solid fraction, u is the volume
flux (or Darcy velocity), ψ is the stream function defined by u = (−ψz, ψx), and
Π is the permeability. Equations (2.2) have been rendered dimensionless by scaling
velocities with V , lengths and time with κ/V and κ/V 2, respectively, with κ being
the thermal diffusivity, and permeability with a reference value Π0. In general the
dimensionless permeability Π is a function of φ; for analytical expediency, we shall
restrict the mushy region to be of uniform permeability by setting Π = 1. Note that
the derivative ∂/∂x in (2.2a, b) reflects the rate at which the material is continually
being pulled in the horizontal direction (cf. Worster 1997).

The dimensionless groups are the Stefan number, a compositional ratio and a mush
Rayleigh number defined respectively by

S = L/(cp�T ), C = (Cs − C0)/�C, Ra = β�CgΠ0/(νV ), (2.3a–c)

where L is the specific latent heat, cp is the specific heat capacity, Cs is the composition
of the solid phase, β = β∗ − Γ α∗, α∗ and β∗ being the thermal and solutal expansion
coefficients, g is the acceleration due to gravity and ν is the liquid kinematic viscosity.
Note that the Rayleigh number is inversely proportional to the solidification rate, so
that large values of Ra , which we shall consider shortly, can be achieved by pulling
the mush at correspondingly small rates.

In the analysis below, we consider a particular asymptotic regime in which the
thermal and flow fields are steady, whilst some transient solidification can still occur.
The boundary conditions on the flow and thermal fields are

θ = −1, ψ = 0 at x = 0 (z > 0), (2.4a, b)

θ → 0, ∂ψ/∂x → 0 as x → ∞ (z > 0). (2.5a, b)

The far-field and initial conditions on the local solid fraction are provided in § 4.

3. Boundary-layer equations
We wish to examine the free convective flow, coupled with solidification, at high

Rayleigh numbers. In this limit, the flow is confined to a narrow region adjacent to the
solid–mush interface. Further, we consider the asymptotic limit of large C in order
that φ is kept less than unity throughout most of the domain, and large S in order
to retain the influence of local phase change. These parameter limits are appropriate
for systems in which the latent heat released during the solidification is comparable
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to the heat associated with the depression of the liquidus. Typical laboratory values
(for example in experiments using aqueous solutions) are Ra ≈ 103, S ≈ 10, C ≈ 10,
the latter being achieved by having an initial concentration close to the liquidus.

A scaling analysis of (2.2) suggests the rescalings

S = Ra1/2S̄ , C = Ra1/2C̄ , (3.1a, b)

x = Ra−1/2X, t = Ra−1/2T , ψ = Ra1/2Ψ, (3.2a–c)

with S̄ , C̄ , X, T and Ψ assumed O(1) as Ra → ∞. The scalings of x and ψ are
typical of vertical, free-convection boundary-layer flows in porous media (e.g. Cheng
& Minkowycz 1977; Ingham & Brown 1986), while the scaling of t ensures that some
temporal development of the solid fraction can be examined (§ 4). The particular
choice of scalings embodied in (3.1) ensures that all the important interactions
between flow, heat and mass transfer and phase change are retained at leading order.

Substituting into (2.2), taking the limit Ra → ∞ and rearranging, we obtain

Ω

(
−∂Ψ

∂z

∂θ

∂X
+

∂Ψ

∂X

∂θ

∂z

)
=

∂2θ

∂X2
, (3.3a)

∂φ

∂T
− ∂φ

∂X
= − 1

ΩC̄

∂2θ

∂X2
, (3.3b)

∂2Ψ

∂X2
= − ∂θ

∂X
, (3.3c)

where Ω = 1 + S̄ /C̄ .
The modified solute-conservation equation (3.3b) deserves some discussion. First,

it decouples from the heat balance (3.3a) and the momentum balance (3.3c); this
fact hinges on the assumption (3.1b) (the near-eutectic limit, cf. Emms & Fowler
1994). Further, noting that Ω = O(1), (3.3b) implies that φ remains O(1) within the
boundary layer. Finally, the solid fraction evolves solely in response to the thermal
field; this feature appears characteristic of free mush convection, and is discussed
further in § 4.

4. Similarity solution
4.1. Steady solution

We observe that (3.3a) and (3.3c), subject to (2.4) and (2.5), govern steady-state
thermal and flow fields. Note that there is a fast initial phase, t = O(Ra−1), during
which these fields evolve to their steady states, which we ignore.

We seek a similarity solution of the form

Ψ = z1/2f (η)/Ω1/2, θ = θ(η), where η = Ω1/2X/z1/2. (4.1a–c)

Then, from (3.3c) and (2.5), θ is given by

θ = −f ′, (4.2)

and, from (3.3a), (2.4) and (2.5b), f satisfies

f ′′′ + 1
2
ff ′′ = 0, (4.3)

f = 0, f ′ = 1 (η = 0); f ′ → 0 (η → ∞). (4.4a–c)

Equations (4.2)–(4.4) are equivalent to those derived by Cheng & Minkowycz (1977).
Thus the flow and thermal fields are qualitatively similar to those in the problem
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Figure 2. (a) Contours of the steady-state solid fraction for S̄ = C̄ = 1. Contours range
from 0.001 to 0.3 by constant increments, starting from the right. (b) An enlargement of the
region in the vicinity of the leading edge of the interface. Contours of φ (solid curves) are
shown together with streamlines of u (solid curves with arrows). Contours range from φ = 0.4
to 1 and Ψ = 0.375 to 0.149, starting from the right. The dark shading indicates the region
where the mush freezes completely, forming a solid inclusion. The light shading indicates the
portions in which, in turn, the present theory breaks down; these portions are bounded by a
streamline traversing the point P. Also shown is a representative isotherm θ = −0.471 (dashed
curve).

without solidification, with quantitative deviations given by the incorporation of Ω

in (4.1a, c).
The rate of heat transfer across the interface is measured by the local Nusselt

number, which is given by

Nu =
∂θ

∂x

∣∣∣∣
x=0

= Ra1/2Ω1/2 1

z1/2

dθ

dη

∣∣∣∣
η=0

≈ 0.444Ra1/2Ω1/2z−1/2. (4.5)

Here the value of dθ/dη|η=0 has been determined from the numerical solution to (4.3)
and (4.4). An approximate analytical solution, discussed in the Appendix, provides
an estimate ( 3

28
+ 1

14
( 5

3
)1/2)1/2 ≈ 0.446. Expression (4.5) shows that the solidification

makes the heat transfer more efficient: as Ω rises from unity, the release of latent
heat tends to warm the mush, thereby thinning the boundary layer and enhancing
the heat transfer out of the mush. The same trend was observed in the experiments
by Bloomfield & Huppert (2003); cf. their figure 17.

To find a steady solution to (3.3b), the far-field solid fraction, φ∞(z) ≡ limX→∞ φ,
must be specified. A similarity solution is admitted provided

φ∞(z) = φ̄∞/z1/2 (z � φ̄2
∞), (4.6)

where φ̄∞ is a prescribed non-negative constant. We choose φ̄∞ = 0 for simplicity,
and integrate (3.3b) to obtain

φ(X, z) =
1

Ω1/2C̄

1

z1/2

dθ

dη
. (4.7)

This solution is shown in figure 2 for S̄ = C̄ = 1. Near the leading edge of the
interface, the lateral heat transfer is much higher than in the distal regions up- and
downstream, which acts to enhance the local freezing; this is exhibited in figure 2(a)
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by a bulbous region of increased φ close to the edge of the interface. We find that
there is a finite region in which complete solidification occurs (figure 2b), arising
from a singularity in the temperature gradient owing to a discontinuity in boundary
conditions on the interface as z → 0. The occurrence of this solid inclusion places
further bounds on the validity of our solutions, since in practice the flow cannot pass
through it. The region of invalidity is bounded by a limiting streamline that passes
through

(XP , zP ) = (ηP Ω−1/2z
1/2
P , zP ), with ηP ≈ 1.373, zP ≈ 0.093Ω−1C̄ −2. (4.8)

Since (XP , zP ) ∝ (Ω−1C̄ −1, Ω−1C̄ −2) the inclusion shrinks self-similarly as either S̄
or C̄ increases, increasing the spatial range for the validity of the model.

Strictly speaking the region where our model is invalid extends all the way up
the eutectic front since the streamlines closest to the front have passed through the
small corner region of zero porosity. Discounting this region would seem therefore to
introduce a global error. However, the temperature and bulk-composition fields are
little affected by these few streamlines and our solutions provide good (asymptotic)
approximations away from the corner itself. We assess this by examining its relative
contribution to the heat budget, which, in terms of the approximate solution (see the
Appendix), can be expressed as

1 + θΨ (z) = (b/a − 1)[exp(aΨP /z1/2) − 1], (4.9)

where θΨ (z) is the temperature along the limiting streamline, ΨP ≈ 0.299Ω−1/2C̄ −1 is
the corresponding value of the stream function, a ≈ 0.390 and b ≈ 0.836. It follows
that the buoyancy supply provided by this region decays exponentially along the
direction of the free stream, being of relatively minor significance for z � a2Ψ 2

P ≈
0.014Ω−1C̄ −2. Physically, the region of invalidity acts simply to displace the apparent
position of the eutectic front. Since there would be restricted flow in this region, the
bulk-composition field must be essentially unaltered in that region from what it is
just outside.

As the eutectic interface advances into the mushy region, the remaining liquid is
solidified, producing a matrix of composite solid around the pure dendritic crystals.
Defining a bulk composition in the mush as Θ = (1 − φ)θ + C φ, we find that the net
composition in the eutectic solid depends on the solid fraction at the mush side of
the interface, yielding

Θi(z) = −1 +
Ra1/2(1 + C )

[C (S + C )]1/2

dθ

dη

∣∣∣∣
η=0

1

z1/2
. (4.10)

This solution is valid for z � (dθ/dη|η=0)
2Ω−1C̄ −2 ≈ 0.197Ω−1C̄ −2, the lower bound

corresponding to where the edge of the solid inclusion meets the interface and thus
where Θ = C . Note that the remaining liquid at the eutectic boundary makes a
contribution of CE[1 − φ(0+, z)]/Cs to the solid fraction already present, i.e. φ(0+, z).
From (4.10) it follows that the solute content in the eutectic solid decreases with height
as z−1/2. This qualitative result compares well with the laboratory measurements by
Huppert et al. (1987).

Another important aspect of the relationship (4.10) is the appearance of a maximum
extent of convective solute redistribution,

zmax/Ra =
(1 + C )2

C (S + C )

(
dθ

dη

∣∣∣∣
η=0

)2

≈ 0.197
(1 + C )2

C (S + C )
, (4.11)
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Figure 3. Contours of the scaled maximum extent of solute redistribution at the solid–mush
interface in the steady state, zmax/Ra , as a function of S and C . Contours range from 0.01
to 0.55 by constant increments, starting from the right. The path of the local minimum of
zmax/Ra when C is varied independently of S is shown dashed.

as can be deduced from (4.10) on setting Θi = 0. This allows an insight into the
parametric dependences of macrosegregation in the system. Contours of zmax , scaled
with Ra , as a function of S and C are shown in figure 3. At a fixed C , zmax

decreases monotonically with increasing S . Further, if C > S /(S − 2) and S > 2,
corresponding to the region above the dashed curve in figure 3, then zmax increases
as C increases for a given S . Both behaviours can be understood by considering a
flux of solute-depleted fluid at height z in the mush. The latter has the form

F /Ra1/2 = −
∫ ∞

0

Wθ dX =
1

Ω1/2
z1/2

∫ ∞

0

θ(η)2 dη ≈ 0.887Ω−1/2z1/2, (4.12)

where W = Ra−1w, with w denoting the vertical component of u. Here C appears
only in a ratio with S (within Ω−1/2), so that increasing C serves to reduce the
effective value of S . The solid fraction locally decreases as C increases (provided
Ra is fixed), and so more latent heat is required to be removed in order to achieve
a given solutal flux. Perhaps surprisingly, smaller parameter values reverse the trend
of variation with C ; this trend is, however, limited because the asymptotic results
require both S and C to be large.

4.2. Transient solution

Here we are concerned with the manner in which the final equilibrium state, given
by (4.7), is approached. Equation (3.3b) is hyperbolic in X and T and requires, in
addition to the ‘upstream’ boundary condition (4.6), an initial condition on φ. We
look for a transient self-similar solution of the form

φ(X, z, T ) = φ̄(η, τ )/z1/2, where τ = Ω1/2T/z1/2, (4.13a, b)
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and use the method of characteristics to obtain

φ̄(η, τ ) = φ̄0(η + τ ) +
1

Ω1/2C̄

[
θ ′(η) − θ ′(η + τ )

]
. (4.13c)

This solves the transient problem in terms of an initial condition φ0(X, z) = φ̄0(η)/z1/2.
A particular form of the function φ̄0(η) depends on the history of the system over a
time of O(Ra−1) (see § 4.1). Nonetheless, we argue in favour of the initial state given
by

φ̄0(η) = φ̄∞ = 0 (η � 0), i.e. φ0(X, z) = 0 (X � 0, z > 0). (4.14a–c)

Our prescription (4.14a) rests on the idea that the transients in the thermal and flow
fields evolve so quickly that they can preserve the solid fraction unchanged continually
over the period of O(Ra−1), i.e. in its far-field distribution defined by (4.6). Further,
we take φ̄∞ = 0 (see (4.14b)) so as to describe the evolution towards the steady state
(4.7).

In (η, τ )-space, the transient solidification in the mushy region has the nature of
a uniformly-propagating wave, the propagation velocity being given by the pulling
speed. Of greater interest is a development of the compositional stratification in the
eutectic solid which results from the temporal variation of the solid fraction at the
eutectic boundary. Note that the dimensionless time T can also be interpreted as the
dimensionless width of the eutectic solid formed. The bulk composition evolves from
a uniform initial state Θ = −1 and asymptotes to (4.10) as T → ∞. At the interface
the steady state is approached exponentially with a decay factor proportional to
Ω−1/2z1/2. The delay in the approach to steady state as height z increases gives rise
to a compositional stratification in the solid typical of the long-time evolution of
systems solidifying along a fixed vertical wall in large tanks (Huppert et al. 1987; cf.
their figure 10).

5. Conclusion
A simple model of laterally solidifying mushy regions has been proposed which

provides a clear physical description of the coupling between flow and solidification,
and quantifies the associated fluxes of heat and solvent. Briefly, buoyancy due to
the horizontal compositional drop across the mush drives convection confined to a
thermal boundary layer along the eutectic front. Its width is determined by a balance
among heat advection, cross-stream diffusion and latent-heat release, while the rate
at which solute is carried by convection determines the local rate of solidification.

The analysis of this paper rests on the assumption that the permeability of the
mush is uniform. Therefore, although the flow generally induces the local growth
or dissolution of dendrites, the resulting alteration of the permeability and, in turn,
self-adjustment of the convection pattern is not captured. A more detailed analysis,
perhaps employing a non-similar solution technique, is required to incorporate this
important nonlinear effect. Such an effect is expected to prevent the formation of a
solid inclusion near the leading edge of the eutectic boundary.

The primary conclusion of this paper is that convection within the mush sets up
significant solute stratification in the resulting solid product. Some of the available
experimental data lend support to our results on solute macrosegregation. In typical
experiments, however, convection is complicated for a variety of reasons, including
the presence of a liquid region, double-diffusive instabilities and a finite container size.
We hope that our idealized model will stimulate further theoretical investigations of
this complex problem.
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Appendix. Approximate solution
A system equivalent to (3.3a), (3.3c), (2.4) and (2.5) can be written as

Ω

(
U

∂θ

∂X
− θ

∂θ

∂z

)
=

∂2θ

∂X2
, (A 1a)

∂U

∂X
− ∂θ

∂z
= 0, (A 1b)

θ = −1, U = 0 at X = 0 (z > 0), (A 2a, b)

θ → 0 as X → ∞ (z > 0 ), (A 2c)

where U = Ra−1/2u and u denotes the horizontal component of u.
We construct an approximate solution to (A 1) and (A 2) by using a method of

integral relations (Dorodnitsyn 1962). The method begins by the derivation of an
integral relation that must be satisfied by the exact solution. On multiplying (A 1b)
by a weighting function p = p(θ), possessing the property that it decays at least as
fast as θ as X → ∞, multiplying (A 1a) by p′(θ), adding the two and integrating
across the boundary layer, we obtain

d

dz

∫ 0

−1

1

q(θ)
p(θ)θ dθ = p′(−1)q0(z) +

∫ 0

−1

q(θ)p′′(θ) dθ, (A 3)

where θ has been used as independent variable instead of X by setting q =
Ω−1/2∂θ/∂X and q0(z) ≡ q|θ=−1.

A first approximation to the solution could be obtained by representing q(θ) by
a first-order interpolating polynomial q(θ) = q0(z)θ . Evaluating (A 3) with p(θ) = θ ,
we obtain q0 = 1/(2z)1/2 and θ = −e−η/2, with η given by (4.1c). A more accurate
approximation is obtained by using the second-order interpolating polynomials

q = 2θ
[(

θ + 1
2

)
q0(z) − 2(θ + 1)q1(z)

]
, (A 4a)

1/q =
[
2

(
θ + 1

2

)
/q0(z) − (θ + 1)/q1(z)

]
/θ, (A 4b)

where q1(z) ≡ q|θ=−1/2. Note that with these representations, (A 1) and (A 2) are
satisfied at the boundaries of the two equally spaced intervals in θ-space, namely
θ = − 1

2
and −1. To determine q0 and q1, (A 3) must be evaluated with two different

weighting functions p(θ). We choose the linearly independent functions p(θ) = θ and
θ 2, and find that q0 and q1 satisfy

d

dz

(
1

q0

+
1

q1

)
= 6q0,

d

dz

(
2

q0

+
1

q1

)
= 4(5q0 − 4q1), (A 5a, b)

which are solved by

q0 = q̄0/z
1/2, q1 = q̄1/z

1/2, (A 6a, b)

with 1/q̄2
0 = 4(9 − 2

√
15) and 1/q̄2

1 = 32
7
(6 −

√
15). Equation (A 4a) can then be

integrated to obtain

θ = −b/[a + (b − a)ebη], (A 7)
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where a = 2(2q̄1 − q̄0) ≈ 0.390 and b = q̄0 − 4q̄1 ≈ 0.836. Equation (A 1b) gives, on
integration and applying (A 2b),

U = − 1

2a

1

Ω1/2

1

z1/2

[
ln

b

a + (b − a)ebη
+

b(b − a)ηebη

a + (b − a)ebη

]
. (A 8)

From (4.7) and (A 7), we find

φ = b2(b − a)
1

Ω1/2C̄

1

z1/2

ebη

[a + (b − a)ebη]2
. (A 9)

Finally, the flux of solvent, defined by (4.12), may, using (A 7), be expressed as

F /Ra1/2 =
1

a

(
b

a
ln

b

b − a
− 1

)
1

Ω1/2
z1/2 ≈ 0.889Ω−1/2z1/2. (A 10)

This Appendix provides approximate analytical solutions for key properties of the
system.
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